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Abstract: Modes emerging out of a collapsing black hole are red-shifted to such an

extent that Hawking radiation at future null infinity consists of modes that have energies

beyond the Planck scale at past null infinity. This indicates that physics at the Planck

scale may modify the spectrum of Hawking radiation and the associated stress-energy

tensor of the quantum field. Recently, it has been shown that, the T-duality symmetry of

string fluctuations along compact extra dimensions leads to a modification of the standard

propagator of point particles in quantum field theory. At low energies (when compared

to the string scale), the modified propagator is found to behave as though the spacetime

possesses a minimal length, say, L
P
, which we shall assume to be of the order of the Planck

length. We utilize the duality approach to evaluate the modified propagator around the

rotating Banados-Teitelboim-Zanelli black hole and show that the propagator is finite in

the coincident limit. We compute the stress-energy tensor associated with the modified

Green’s function and illustrate graphically that the quantum gravitational corrections turn

out to be negligibly small. We conclude by briefly commenting on the results we have

obtained.
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1. Why do we need to consider Planck scale physics?

Hawking radiation primarily arises due to the asymmetry in the extent of the redshift and

the blueshift of the modes of a quantum field as they propagate through matter that is

collapsing gravitationally and, eventually, goes on to become a black hole [1]. Consider a

typical mode that constitutes Hawking radiation at the future null infinity (i.e. at I+), say,

the mode where the intensity of the radiation is the maximum and whose wavelength can

be identified, for instance, using Wein’s law. When one traces such a mode back to the

past null infinity (i.e. to I−) where the initial conditions are imposed on the quantum field,

one finds that the energy of the mode turns out to be way beyond the Planck scale. (This

feature seems to have been originally noticed in ref. [2]; in this context, also see ref. [3].) As

Hawking radiation mostly consists of modes that leave the future event horizon just before

its formation, such a phenomenon essentially occurs due to the enormous red-shifting of

the modes near the horizon. This behavior then raises the question as to whether the

Planck scale effects will modify the spectrum of Hawking radiation and the associated

stress-energy tensor of the quantum field.

There has been a sufficient amount of effort in the literature towards understanding

the effects of Planck scale physics on Hawking radiation (for the earliest discussions, see

refs. [4 – 7] and, for relatively recent efforts, see refs. [8 – 10]). In the absence of a workable

quantum theory of gravity, to study the Planck scale effects, most of these efforts (apart

from one notable exception, see ref. [6]) consider phenomenological models constructed by

hand — models which purportedly contain one or more features of the actual effective

theory obtained by integrating out the gravitational degrees of freedom. These models

either introduce new features in the standard dispersion relation [4, 5, 10], or work with

a classical fluctuating geometry [7], or assume that the spacetime coordinates are non-

commutative [8]. Often — though, we should hasten to add — but, not always, these high
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energy models do not preserve local Lorentz invariance. Moreover, some of them either

consider a simpler model of Hawking radiation (say, the popular model of a moving mirror

in flat space-time [8]) rather than the actual situation, or just consider the spherically

symmetric (i.e. the ℓ = 0) mode in higher dimensional cases, which, essentially, reduces to

studying the effects in (1+1)-dimensions. Our aim in this work, is to use a locally Lorentz

invariant approach to evaluate the Planck scale modifications to stress-energy tensor around

a black hole without resorting to such approximations.

General arguments based on the merging of essential concepts from general relativity

and quantum mechanics seem to indicate that it may not be possible to probe spacetime

intervals smaller than the Planck length, say, L
P

(see, for example, ref. [11]). An approach

that introduces such a ‘zero-point length’ into standard quantum field theory while pre-

serving local Lorentz invariance is the so-called principle of path integral duality (for the

original discussion, see refs. [12]; for various applications of the approach, see refs. [13 –

15]). Interestingly, it has been shown that, at low energies (when compared to the string

scale), the modified propagator of matter fields obtained through such an approach is

equivalent to taking into account the string fluctuations propagating along compact extra

dimensions [16 – 18]. Effectively, the path integral duality approach can be said to provide

a prescription to evaluate the modified Green’s function of a free quantum field that is

propagating in a given classical background (for further details, see the following section).

In this work, we shall use this prescription to evaluate the modified Green’s function and

the Planck scale corrections to the stress-energy tensor around a specific black hole.

In (3 + 1)-dimensions, it proves to be difficult to evaluate the two-point function ex-

actly around even the simplest of black holes. As a result, the stress-energy tensor of a

quantum field around, say, the Schwarzschild black hole has been evaluated only under

an approximation (see, for example, refs. [19 – 21]). In contrast, the spacetime around the

(2 + 1)-dimensional, rotating Banados-Teitelboim-Zanelli (BTZ, hereafter) black hole [22 –

24] provides a situation wherein it is possible to calculate the two-point function in a closed

form [25 – 31]. We shall utilize this feature to compute the duality modified propagator and

the corresponding Planck scale corrections to the standard stress-energy tensor around the

rotating BTZ black hole.

The remainder of this paper is organized as follows. In the following section, we

shall briefly outline as to how the principle of path integral duality modifies the two-point

function of a free quantum field evolving in a given spacetime. In section 3, we shall

evaluate the modified propagator around the rotating BTZ black hole, and show that the

path integral duality approach regulates the ultra-violet behavior of the two-point function.

In section 4, we shall compute the stress-energy tensor associated with the modified two-

point function and graphically illustrate the form of the Planck scale modifications to the

stress-energy tensor. Finally, in section 5, we shall close with a brief discussion on the

results we have obtained.

Before we proceed, a few words on our notations and conventions are in order. We

shall work in (2 + 1)-dimensions and adopt the metric signature of (−,+,+). Also, for

convenience, we shall denote the set of three coordinates xµ as x̃, and use units such that

~ = c = 1. In such units, in (2 + 1)-dimensions, the Planck length is given by L
P

= G.

(We should emphasize that G is the (2 + 1)-dimensional Newton’s constant.)

– 2 –
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2. String fluctuations, duality and the modified Green’s function

Recently, it was shown that, when the fluctuations of closed strings along compact extra

dimensions are taken into account, one arrives at an effective propagator for point particles

that is regular at high energies [18]. It was found that, the T -duality symmetry between

the topologically non-trivial excitations and the winding modes of the strings around the

compact dimensions leads to a modified propagator in the Minkowski vacuum wherein the

original spacetime interval (x̃− x̃′)2 between the two spacetime events x̃ and x̃′ is replaced

by [(x̃ − x̃′)2 + L2
P
], where, as we mentioned above, L

P
denotes the Planck length. Thus,

effectively, the string fluctuations introduce a zero point length L
P

into the standard field

theory.

A similar modification of the Minkowski propagator has been obtained earlier by in-

voking the principle of path integral duality [12]. Recall that, in standard quantum field

theory, the path integral amplitude for a path connecting events x̃ and x̃′ in a given space-

time is proportional to the proper length, say, R(x̃, x̃′), between the two events. The

duality principle proposes that the path integral amplitude should be invariant under the

transformation R →
(
L2

P
/R
)
. Operationally, it turns out to be convenient to express the

effect of the duality approach and the string fluctuations on the propagator in terms of

the Schwinger’s proper time formulation [12]. One finds that, in such a formulation, the

string fluctuations and the duality approach effectively modify the weightage given to a

point particle of mass m, from exp −(im2 s) to exp −[i (m2 s− (L2
P
/4 s))].

Consider a free scalar field of mass m that is propagating in a given classical gravita-

tional background described by the metric tensor gµν . Let us further assume that the field

is non-minimally coupled to gravity. In Schwinger’s proper time formalism, the two-point

function corresponding to such a scalar field can be expressed as [32, 33]

G(x̃, x̃′) = i

∞∫

0

ds K(x̃, x̃′; s), (2.1)

where K(x̃, x̃′; s) is defined as

K(x̃, x̃′; s) ≡ 〈x̃| ei (b�−m2−ξ R) s |x̃′〉, (2.2)

and R is the curvature of the background spacetime with ξ being the coefficient of the non-

minimal coupling. In other words, the quantity K(x̃, x̃′; s) is the path integral amplitude

for a quantum mechanical system described by the following Hamiltonian:

Ĥ = −
(
�̂ −m2 − ξ R

)
≡ − 1√−g ∂µ

(√−g gµν ∂ν

)
+m2 + ξ R. (2.3)

As we mentioned, the effects due to path integral duality or, equivalently, the string fluc-

tuations, correspond to modifying the expression (2.1) above for the two-point function

to [12, 18]

GM(x̃, x̃′) = i

∞∫

0

ds eiL
2

P
/4 s K(x̃, x̃′; s). (2.4)
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In the following section, we shall make use of this prescription to evaluate the modified

two-point function around the rotating BTZ black hole.

3. The modified Green’s function around the rotating BTZ black hole

The rotating BTZ black hole is an axially symmetric vacuum solution of the Einstein’s

equations in three-dimensional anti-de Sitter spacetime (AdS3, hereafter). It can be conve-

niently represented as AdS3 identified under a discrete subgroup of its isometry group [22 –

24].

Recall that AdS3 is a maximally symmetric space sourced by a negative cosmological

constant, say, −ℓ−2. AdS3 can be described by the line-element

ds2 = −
(
r̂2

ℓ2
− 1

)
dt̂2 +

(
r̂2

ℓ2
− 1

)−1

dr̂2 + r̂2 dφ̂2, (3.1)

where −∞ < (t̂, φ̂) < ∞ and 0 < r̂ < ∞. It is important to note that the coordinate φ̂ in

the above line-element has an infinite range and, hence, is not periodic. The rotating BTZ

black hole of mass M and angular momentum J can be obtained from the above AdS3

line-element by making the coordinates t̂ and φ̂ suitably periodic as follows [22 – 24]:

(t̂, r̂, φ̂) ≡
[
(t̂− 2π n ℓα

−
), r̂, (φ̂+ 2π nα

+
)
]
, (3.2)

where, n is an integer, and the quantities α± are given by

α
±

=
(√

(8GM)/2
) [√

1 + (J/M ℓ) ±
√

1 − (J/M ℓ)
]
. (3.3)

(It should be pointed out that, in the units that we are working in, the quantities (8GM)

and (J/M ℓ) do not carry any dimensions.) On redefining the coordinates (t̂, r̂, φ̂) as

follows (see, for instance, ref. [25]):

t̂ =
(
α

+
t− α

−
ℓ φ
)
, φ̂ =

[
α

+
φ− (α

−
t/ℓ)

]
, and r̂2 =

(
r2 − (α

−
ℓ)2

α2
+
− α2

−

)
, (3.4)

we obtain the metric around the rotating BTZ black hole to be [22 – 24]

ds2 = −
(
r2

ℓ2
− 8 GM

)
dt2 − (8 GJ) dt dφ+

[
r2

ℓ2
− (8GM) +

(8 GJ)2

4 r2

]−1

dr2 + r2 dφ2

(3.5)

with −∞ < t <∞ and 0 < r <∞. Using the relations (3.4), it is easy to show that, under

the periodicity conditions (3.2), while t → t, φ → (φ + 2π n). Evidently, φ is a genuine

angular coordinate that can be restricted to the domain 0 < φ ≤ 2π. The rotating BTZ

black hole solution (3.5) contains two horizons, and the locations of the outer (r
+
) and

inner (r
−
) horizons are given by

r
±

=
(
α

±
ℓ
)

=
(√

(8GM) ℓ/2
) [√

1 + (J/M ℓ) ±
√

1 − (J/M ℓ)
]
. (3.6)
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Note that, when J = 0, r
−

vanishes, and r
+

= [
√

(8GM) ℓ].

It is clear from the above discussion that, if we can evaluate the Green’s function, say,

G
AdS

(x̃, x̃′), in AdS3, then the Green’s function, say, G
BTZ

(x̃, x̃′) around the rotating BTZ

black hole can be obtained on imposing by hand the periodicity condition (3.2), and trans-

forming to the black hole coordinates using the relations (3.4) [25 – 31]. Therefore, we need

to first evaluate the Green’s function in AdS3. We shall do so by evaluating the quantum

mechanical kernel K(x̃, x̃′; s) and using the Schwinger’s proper time expression (2.1) to

arrive at the Green’s function.

In order to calculate the kernel K(x̃, x̃′; s) in AdS3, it turns out to be more convenient

to work with the following set of coordinates [23]:

x2 = r̂−1
√

(r̂2 − ℓ2) eφ sinh (t̂/ℓ),

y = (ℓ/r̂) eφ, (3.7)

x1 = r̂−1
√

(r̂2 − ℓ2) eφ cosh (t̂/ℓ).

In terms of these new coordinates, the AdS3 line-element (3.1) reduces to

ds2 = (ℓ2/y2)
(
−dx2

2 + dy2 + dx2
1

)
, (3.8)

which, evidently, is conformal to flat spacetime. The kernel of a massive and non-minimally

coupled scalar field propagating in the above conformally flat line-element can be easily

evaluated using the method of spectral decomposition (see, for instance, the appendix in

ref. [31]). We find that the kernel can be expressed as [29 – 31]

K(x̃, x̃′; s) =

(
1

(4π i s)3/2

) (
σ(x̃, x̃′)

sinh σ(x̃, x̃′)

)
exp

[
i (σ2(x̃, x̃′) ℓ2/4 s) − i (b s/ℓ2)

]
, (3.9)

where b =
[
1 + (mℓ)2 + ξ R ℓ2

]
, with R = −(6/ℓ2) being the Ricci scalar (is a constant in

AdS3). The dimensionless quantity σ(x̃, x̃′) is given by the relation

sinh
[
σ(x̃, x̃′)/2

]
=
[(

−
(
x2 − x′2

)2
+
(
y − y′

)2
+
(
x1 − x′1

)2)
/4 y y′

]1/2
, (3.10)

and it should be pointed out that [ℓ σ(x̃, x̃′)] is the geodesic distance between the two

points x̃ and x̃′ in AdS3. (It may be useful to note that the geodesic distance in AdS3 can

be conveniently expressed in terms of the chordal distance between the two points in the

embedding space.) In terms of the original coordinates (t̂, r̂, φ̂), the quantity σ(x̃, x̃′) turns

out to be

sinh
[
σ(x̃, x̃′)/2

]
=
(√

2 ℓ
)−1

[
−
√

(r̂2 − ℓ2) (r̂′2 − ℓ2) cosh
[(
t̂− t̂′

)
/ℓ
]

(3.11)

− ℓ2 + r̂ r̂′ cosh
(
φ̂− φ̂′

)]1/2

.

On using expression (2.1), the Green’s function corresponding to the kernel (3.9) can then

be immediately evaluated to be [29 – 31]

G
AdS

(x̃, x̃′) =

(
1

4π ℓ

) (
1

sinh σ(x̃, x̃′)

)
exp−

[√
b σ(x̃, x̃′)

]
. (3.12)
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We should mention here that this Green’s function corresponds to a particular choice

of boundary condition (actually, the Dirichlet condition [29 – 31]) that is required to be

imposed at spatial infinity in AdS spacetimes (see, for example, refs. [34]).

The Green’s function around the rotating BTZ black hole can now be obtained by

imposing the periodicity condition (3.2) in the AdS3 Green’s function (3.12), and trans-

forming into the black hole coordinates using the relations (3.4). The BTZ Green’s function

can be expressed as [25 – 31]

G
BTZ

(x̃, x̃′) =

(
1

4π ℓ

) ∞∑

n=−∞

(
1

sinh σn(x̃, x̃′)

)
exp−

[√
b σn(x̃, x̃′)

]
, (3.13)

with σn(x̃, x̃′) defined as

sinh
[
σn(x̃, x̃′)/2

]
(3.14)

=

(
1√
2

) [
−1 +

(√
(r̄2−η2) (r̄′2−η2)

1−η2

)

cosh
[
(α

+
/ℓ) (t−t′)−α

−
(φ−φ′+2π n)

]

−
(√

(r̄2 − 1) (r̄′2−1)

1−η2

)

cosh
[
(α

−
/ℓ) (t−t′)−α

+

(
φ−φ′+2π n

)]]1/2

and r̄ and η denoting dimensionless quantities given by

r̄ = (r/r+) and η = (r−/r+) = (α−/α+) . (3.15)

The time translational invariance clearly indicates that the above Green’s function corre-

sponds to the Hawking-Hartle state of the black hole (see, for instance, ref. [35]).

The duality modified Green’s function in AdS3 can now be obtained by substituting

the kernel (3.9) in the expression (2.4) and carrying out the integral over s. We obtain the

duality modified Green’s function in AdS3 to be

GM
AdS

(x̃, x̃′) =

(
1

4π ℓ

) (
σ(x̃, x̃′)

sinh σ(x̃, x̃′)

) 

 1√
σ2(x̃, x̃′) + L̄2

P



 (3.16)

× exp−
(√

b [σ2(x̃, x̃′) + L̄2
P
]

)
,

where σ(x̃, x̃′) is given by eq. (3.11), while L̄
P

denotes the dimensionless quantity (L
P
/ℓ).

In the coincidence limit (i.e. when x̃ → x̃′), σ(x̃, x̃′) → 0, and the above modified Green’s

function reduces to

GM
AdS

(x̃, x̃) =

(
1

4π L̄
P
ℓ

)
exp−

(√
b L̄

P

)
. (3.17)

Note that the Green’s function is finite in the coincident limit independent of the nature

of the coupling and the mass of the scalar field. This behavior clearly illustrates that the

string theory inspired modification regulates the theory at the Planck scale.

The modified Green’s function around the rotating BTZ black hole can be obtained

from the above modified Green’s function in AdS3 as in the standard case. It can be

– 6 –
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expressed as

GM
BTZ

(x̃, x̃′) =

(
1

4π ℓ

) ∞∑

n=−∞

(
σn(x̃, x̃′)

sinh σn(x̃, x̃′)

) 

 1√
σ2

n(x̃, x̃′) + L̄2
P



 (3.18)

× exp−
(√

b [σ2
n(x̃, x̃′) + L̄2

P
]

)

with σn(x̃, x̃′) given by eq. (3.14). The n 6= 0 terms are finite in the coincident limit

even in the standard (i.e. unmodified) case, while the n = 0 term corresponds to AdS3.

Obviously, the modified Green’s function around the rotating BTZ black hole is finite in

the coincidence limit as well.

4. Planck scale modifications to the stress-energy tensor

In this section, we shall first evaluate the standard stress-energy tensor around the rotating

BTZ black hole using the two-point function (3.13). We shall then calculate the Planck

scale modifications to the stress-energy tensor using the modified Green’s function (3.18).

For convenience in calculation, we shall restrict ourselves to the case of a massless and

conformally coupled scalar field [i.e. when m = 0, ξ = (1/8) and, hence, b = (1/4)]. In

such a situation, given the symmetric Green’s function, say, G(x̃1, x̃2), the corresponding

mean value of the stress-energy tensor can be expressed as [25 – 27]

〈T̂µν〉 = lim
2→1

T (1,2)
µν G(x̃1, x̃2). (4.1)

The quantity T (1,2)
µν is a differential operator and is given by

T (1,2)
µν =

[(
3

4

) (
∇1

µ ∇2
ν

)
−
(

1

4

)
gµν g

αβ
(
∇1

α ∇2
β

)

−
(

1

4

) (
∇1

µ ∇1
ν

)
+

(
R

96

)
gµν

]
, (4.2)

where the covariant derivatives ∇1
µ and ∇2

µ act on the points x̃1 and x̃2, respectively, and

R denotes the scalar curvature of the background spacetime. It should be mentioned here

that the Green’s functions (3.13) and (3.18) and, hence, the corresponding stress-energy

tensors are valid in the domain r > r
+
.

4.1 The standard (unmodified) stress-energy tensor

Before we proceed to evaluate the Planck scale modifications, let us evaluate the stress-

energy tensor in the standard case. Also, let us first consider the simpler situation of the

non-rotating BTZ black hole. In such a case, J = 0, so that α
+

=
√

(8GM) and α
−

= 0.

For the case of the Dirichlet boundary condition imposed at spatial infinity, the mean

value of the stress-energy tensor associated with a massless and conformally coupled scalar

field can be obtained by substituting the Green’s function (3.13) [with b = (1/4)] in the

– 7 –
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expression (4.1) above. We find that the resulting stress-energy tensor is diagonal and can

be expressed as [26, 27]

[
ℓ3 〈T̂ µ

ν 〉
]

=

(
1

32π r̄3

) ∞∑

n=1

[

2 +

(

1 −
[
1 +

(
1

r̄2 sinh2 ψn

)]−3/2
)

sinh2 ψn

]

(4.3)

× sinh−3 ψn diag. (1, 1,−2)

+

(
3 (r̄2 − 1)

r̄2 sinh3 ψn

) [
1 +

(
1

r̄2 sinh2 ψn

)]5/2

diag. (1, 0,−1),

where ψn = [
√

(8GM) π n]. In order to arrive at this finite result, we have regularized the

stress-energy tensor by simply dropping the n = 0 term which corresponds to the stress-

energy tensor in AdS3. It is well-known that the stress-energy tensor associated with a

massless and conformally coupled scalar field vanishes in AdS3 because of the absence of the

trace anomaly in odd dimensions [35]. Note that, in the units that we are working with, the

quantity on the right hand side of the expression (4.3) is completely dimensionless so that

the stress-energy tensor has dimensions of inverse length cubed, as is required in (2 + 1)-

dimensions. It is also clear from the above expression that choosing a value for (8GM)

completely determines [ℓ3 〈T̂ µ
ν 〉] as a function of r̄, and we need not have to specify the

value of ℓ. In fact, the expression applies to all values of ℓ.

On following the same steps as above, one can, in principle, obtain an analytic expres-

sion for the stress-energy tensor around the rotating BTZ black hole (i.e. when J 6= 0). The

regularization procedure remains the same as in the non-rotating case — one simply drops

the n = 0 term. When the black hole is rotating, one finds that, in addition to the diagonal

components, viz. 〈T̂ t
t 〉, 〈T̂ r

r 〉 and 〈T̂ φ
φ 〉, the 〈T̂ t

φ〉 component turns out to be non-zero as

well [25]. While the procedure for calculating the stress-energy tensor is rather straight-

forward, the resulting expressions turn out to be fairly long to be displayed.1 Therefore,

in order to illustrate the behavior of the stress-energy tensor, in figures 1 and 2, we have

plotted all its components for a couple of different values of the black hole parameters M

and J . Also, to unambiguously demonstrate the effects of rotation, in addition to the

non-rotating case, we have plotted the components of the stress-energy tensor for a rotating

black hole with an extremely large angular momentum J [we have chosen (J/M ℓ) = 0.95,

corresponding to η ≃ 0.73] in the two figures. (We find that, in the rotating case, the

quantities (8GM) and η are sufficient to determine [ℓ3 〈T̂ µ
ν 〉] completely as a function of

r̄. As in the non-rotating case, we need not have to specify the value of ℓ, and the figures

we have plotted apply to all values of ℓ.) These figures clearly indicate that, rotation only

changes the magnitude of the stress-energy tensor and does not alter its qualitative behav-

ior. It either increases or decreases monotonically with the distance from the horizon, as

in the non-rotating case. Moreover, the larger the M , the smaller is the difference in the

1We have evaluated the stress-energy tensor using Mathematica [36]. While we are able to obtain an

unsimplified, analytic expression for the stress-energy tensor in the rotating case, the expression proves to

be rather long and quite cumbersome. We feel that displaying such an expression may not particularly aid

in visualizing the effects of rotation on the stress-energy tensor. We shall instead plot all the components

of the stress-energy tensor.
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Figure 1: The diagonal components of the standard (i.e. the unmodified) stress-energy tensor

around the BTZ black hole, viz. 〈T̂ t
t 〉 (on top), 〈T̂ r

r 〉 (in the middle) and 〈T̂ φ
φ 〉 (at the bottom),

have been plotted as a function of r̄ = (r/r
+
). The red lines (in the left column) and the blue ones

(in the right column) correspond to (8GM) = 10−3 and (8GM) = 10−1, respectively. In all these

plots, the solid lines correspond to the non-rotating case, while the dashed lines correspond to a

rotating black hole with (J/M ℓ) = 0.95 (i.e. η ≃ 0.73). We have chosen such an extreme value

for J to clearly illustrate the effects due to rotation. It is evident from the above figures that, all

the diagonal components of the stress-energy tensor either increase or decrease monotonically with

the distance from the horizon. Also, qualitatively, rotation does not introduce any new features in

these components, but only changes their magnitude. Moreover, the larger the M , the smaller is

the difference in the magnitude of these components between the non-rotating and rotating cases.

Furthermore, this difference is the largest at the horizon, and it decreases with the distance from

the horizon of the black hole.

stress-energy tensor between the non-rotating and rotating cases. Furthermore, it is evi-

dent from the figures that, this difference is the maximum at the horizon and it decreases

with the distance from the horizon.
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Figure 2: The only non-vanishing, non-diagonal, component of the standard stress-energy tensor,

viz. 〈T̂ t
φ〉, has been plotted as a function of r̄ = (r/r

+
). Note that this component is zero in

the non-rotating case. As in the earlier plots, we have chosen (J/M ℓ) = 0.95. The red and blue

dashed lines again correspond to (8GM) = 10−3 and (8GM) = 10−1, respectively. Evidently, the

comments that we had made in the previous figure about the behavior of the diagonal components

of the stress-energy tensor apply to this component as well.

4.2 Planck scale modifications

The Planck scale modifications to the stress-energy tensor around the rotating BTZ black

hole can now be arrived at upon using the modified Green’s function (3.18) in the expres-

sion (4.1). The structure of the modified stress-energy tensor turns out to be the same as

in the standard case. When the black hole is not rotating, the only non-zero components

of the modified stress-energy tensor are the diagonal components, which we shall refer to

as 〈T̂ t
t 〉M , 〈T̂ r

r 〉M and 〈T̂ φ
φ 〉M . Around a rotating black hole, as in the unmodified case, the

only additional non-vanishing component turns out to be 〈T̂ t
φ〉M . However, as in case of the

standard stress-energy tensor around a rotating black hole, the resulting expressions for

the modified stress-energy tensor prove to be rather long. We believe that displaying these

long and unwieldy expressions may not be necessarily helpful in understanding the Planck

scale effects. Therefore, we have again plotted the various components of the modified

stress-energy tensor (along with the unmodified ones) in figures 3 and 4.

In order to distinctly show the Planck scale modifications, in these two figures, we have

plotted the non-vanishing components of the stress-energy tensor for an extremely small

(and unrealistic) value of r+ [we have set r
+

= (L
P
/0.9)]. For convenience in comparison,

we have also plotted the corresponding unmodified components in these figures. (Since,

L̄
P

= (L
P
α+/r+) and α2

+ = [(8GM)/(1 + η2)], it turns out that, specifying the values

of (8GM), η and (L
P
/r+) is sufficient to compute [ℓ3 〈T̂ µ

ν 〉M ] as a function of r̄. As in

the unmodified case, the plots are valid for all ℓ.) It is evident from the figures that the

Planck scale effects (as taken into account through the duality principle) do not modify the
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Figure 3: The diagonal components of the modified stress-energy tensor around the BTZ black

hole, viz. 〈T̂ t
t 〉M (at the top), 〈T̂ r

r 〉M (in the middle) and 〈T̂ φ
φ 〉M (at the bottom), have been plotted

as a function of r̄ = (r/r
+
). We have also plotted the corresponding standard components for

comparison. We have set (8 GM) = 10−3 in all the plots. The red lines (in the left column) and

the blue ones (in the right column) correspond to the non-rotating black hole and a rotating one

with (J/M ℓ) = 0.95 (i.e. η ≃ 0.73), respectively. In all these plots, the solid lines correspond to

the standard case wherein L
P

= 0, while the dashed lines correspond to the modified case with

r
+

= (L
P
/0.9). We have chosen such an extremely small value of r

+
and have also plotted over a

smaller range in r̄ in order to distinctly demonstrate the Planck scale effects. The above figures

clearly indicate that the Planck scale effects do not alter the qualitative behavior of the diagonal

components of the stress-energy tensor. Note that the Planck scale modifications are the largest at

the horizon and these modifications decrease monotonically with the distance from the horizon.

stress-energy tensor to any appreciable extent. Nor do they alter its qualitative behavior.

As in the standard case, the modified stress-energy tensor either increases or decreases

monotonically with distance from the horizon. Moreover, the Planck scale modifications

prove to be significant only very close to the horizon. We find that, for an r+ as small

as (L
P
/0.9), the change in the stress-energy tensor is of the order of 3–5% at the horizon.

– 11 –



J
H
E
P
0
9
(
2
0
0
8
)
0
9
5

ℓ3 〈T̂ t
φ〉M

1.0 1.1 1.2 1.3 1.4 1.5

-350

-300

-250

-200

-150

-100

r̄

Figure 4: The only non-zero and non-diagonal component of the modified stress-energy tensor,

viz. 〈T̂ t
φ〉M , has been plotted as a function of r̄ = (r/r

+
). As in the standard case, we find

that this component vanishes in the modified case when the black hole is not rotating. We have

set (8 GM) = 10−3 and chosen (J/M ℓ) = 0.95 in these plots. For comparison, we have also

plotted the corresponding component in the unmodified case. The blue solid line corresponds to

the standard case (i.e. when L
P

= 0), while the blue dashed line corresponds to the modified case

with r
+

= (L
P
/0.9). It is evident that the comments that we had made in the previous figure

about the behavior of the diagonal components of the modified stress-energy tensor apply to this

component as well.

Note that such a small value of r+ corresponds to Planck scale black holes. Evidently,

for such black holes, the semi-classical regime in which we are working will cease to be

valid. However, for any larger (and realistic) value of r+, the plots for the modified case

turns out to be completely indistinguishable from the unmodified one. Therefore, we can

conclude that, for any realistic r+, the modifications are completely negligible. This result

corroborates similar conclusions that have been arrived at earlier in the literature (see, for

example, refs. [4 – 6, 9]).

5. Discussion

In this work, using the T-duality symmetry of the string fluctuations, we have evaluated

the modified two-point function and the resulting stress-energy tensor around the rotating

BTZ black hole. We find that this (2+1)-dimensional case allows us to compute the Planck

scale modifications exactly in the duality approach. This is important, since, as we had

mentioned in the introductory section, much of the earlier analyses had either worked with

the moving mirror model of Hawking radiation in (1+1)-dimensions or had just considered

the spherically symmetric mode in (3 + 1)-dimensions, which, effectively, simplifies to the

(1 + 1)-dimensional model. Moreover, we are not aware of any earlier analysis in the

literature wherein the Planck scale effects have been studied around a rotating black hole.
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Interestingly, we find that the modified Green’s function remains finite in the coincident

limit. Actually, such a result could have been expected based on the Schwinger-DeWitt

expansion of the kernel K(x̃, x̃′; s) [33]. According to the expansion, for small separations,

the kernel in an arbitrary spacetime has the same form as in the Minkowski vacuum.

Therefore, if the modified Green’s function is ultra-violet regulated in flat spacetime, then,

it can be expected to remain finite in the coincident limit in any curved spacetime as

well. Further, we find that the Planck scale modifications to the stress-energy tensor are

negligibly small, in agreement with similar conclusions that have been arrived at earlier in

the literature [4 – 6, 9].

Ideally, rather than evaluate the Planck scale modifications to the stress-energy tensor,

one would like to evaluate the corrections to Hawking radiation itself. This in turn requires

that one considers a dynamical situation, and evaluates either the effective Lagrangian or

the in-out Bogoliubov coefficient, while taking into account the Planck scale modifications.

Moreover, while the (2 + 1)-dimensional BTZ black hole may be more preferable than the

(1 + 1)-dimensional case, it is nevertheless a toy model. One would like to carry out such

an analysis in the more realistic case of (3 + 1)-dimensions. We are currently investigating

these issues.
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